Precalculus

7-01 Lines

Conic sections

Intersections of a _____with a _

Lines

Ax + By + C = 0 or y = mx + b

Inclination

- Describes ______of line
- Angle it makes with _____

$$\tan \theta = m$$

- Where $0^{\circ} < \theta < 180^{\circ}$
 - o If θ < 0, add 180°

Find the inclination of 4x - 2y + 5 = 0.

Angle between Two Lines

$$\theta = \theta_2 - \theta_1$$

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$$

Where $0^{\circ} < \theta < 90^{\circ}$

Find the angle between 2x + y = 4 and x - y = 2.

Distance from a Point to a Line

• Point (x_1, y_1) and Line Ax + By + C = 0 $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

Find the distance from (0, 2) to 4x + 3y = 0.

